skip to main content


Search for: All records

Creators/Authors contains: "Hamilton, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Food insecurity hinders individuals from the healthy and sustainable life they truly deserve. Unfortunately, food insecurity and chronic health diseases affect millions of people across the United States. Food banks are constantly fighting the uphill battle against food insecurity to supply adequate, relevant, healthy meals to those who need them. Oftentimes hunger relief organizations lack data and software tools that could aid strategic decision-making. A local food bank faces this exact problem and is struggling to find clients that face chronic health diseases in their service area. This study uses data from the local food bank to develop visualizations that investigate the health considerations of the population they serve. The results easily found a specific county with the largest number of health considerations and a zip code with the highest number of individuals facing hypertension. Dominant chronic health considerations highlight the importance for food banks to diversify their food selections. It is important for the local food bank to know what foods are essential within each county and zip code area to provide services that will be valuable to those who need them. This study benefits food banks so they can yield better service to the community. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Abstract

    Wildfire risk is a defining environmental challenge throughout much of the American West, as well as in other regions where complex social and ecological dynamics defy simple policy or management solutions. In such settings, diverse forms of land use, livelihoods, and accompanying values provide the conditions for trade-offs (e.g. between protecting homes from uncontrollable fires and restoring low-severity fire to ecosystems as a natural disturbance process). Addressing wildfire risk requires grappling with these trade-offs at multiple levels—given the need for action by individuals as well as by large and diverse stakeholder groups—and under conditions of considerable complexity. We evaluated how individual and collective perception of trade-offs varies as a function of complexity through analysis of the cognitive maps—representations of perceived causal relationships among factors that structure an individual’s understanding of a system—of 111 stakeholders in the Eastern Cascades Ecoregion of central Oregon. Bayesian statistical analysis revealed a strong tendency against perception of trade-offs in individual maps, but not in a collective map that resulted from the aggregation of all individual cognitive maps. Furthermore, we found that lags (the number of factors that mediated the effect of an action on multiple valued outcomes) limited perception of trade-offs. Each additional intervening factor decreased the likelihood of a trade-off by approximately 52% in individual cognitive maps and by 10% in the collective cognitive map. However, the heterogeneity of these factors increased the likelihood of perception of trade-offs, particularly among individual cognitive maps, for which each unit increase of the Shannon diversity index translated into a 20-fold increase in the likelihood of perception of trade-offs. Taken together, these results suggest that features of complexity have distinct effects on individual—and collective-level perception of trade-offs. We discuss implications for wildfire risk decision-making in central Oregon and in other complex wildfire-prone social-ecological systems.

     
    more » « less
  3. Abstract

    An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Before fault-tolerant quantum computing, robust error-mitigation strategies were necessary to continue this growth. Here, we validate recently introduced error-mitigation strategies that exploit the expectation that the ideal output of a quantum algorithm would be a pure state. We consider the task of simulating electron systems in the seniority-zero subspace where all electrons are paired with their opposite spin. This affords a computational stepping stone to a fully correlated model. We compare the performance of error mitigations on the basis of doubling quantum resources in time or in space on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques such as postselection. We study how the gain from error mitigation scales with the system size and observe a polynomial suppression of error with increased resources. Extrapolation of our results indicates that substantial hardware improvements will be required for classically intractable variational chemistry simulations.

     
    more » « less
  4. Abstract Indistinguishability of particles is a fundamental principle of quantum mechanics 1 . For all elementary and quasiparticles observed to date—including fermions, bosons and Abelian anyons—this principle guarantees that the braiding of identical particles leaves the system unchanged 2,3 . However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions 4–8 . Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals 9–22 , the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons 9,10 , we implement a generalized stabilizer code and unitary protocol 23 to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing. 
    more » « less
    Free, publicly-accessible full text available May 11, 2024
  5. Abstract

    Systems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles1. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multiparticle bound states2–9. Here we develop a high-fidelity parameterizable fSim gate and implement the periodic quantum circuit of the spin-½ XXZ model in a ring of 24 superconducting qubits. We study the propagation of these excitations and observe their bound nature for up to five photons. We devise a phase-sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the idea that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.

     
    more » « less